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Abstract

Hierarchical segmentation based object proposal meth-
ods have become an important step in modern object detec-
tion paradigm. However, standard single-way hierarchical
methods are fundamentally flawed in that the errors in early
steps cannot be corrected and accumulate. In this work,
we propose a novel multi-branch hierarchical segmentation
approach that alleviates such problems by learning multiple
merging strategies in each step in a complementary manner,
such that errors in one merging strategy could be corrected
by the others. Our approach achieves the state-of-the-art
performance for both object proposal and object detection
tasks, comparing to previous object proposal methods.

1. Introduction

The goal of generic object proposal generation is to find
all candidate regions that may contain objects in an im-
age [1]. A generic object proposal algorithm has the follow-
ing requirements: it should be able to capture objects of all
scales, has small bias towards object class, and most impor-
tantly: achieve high detection recall with as few proposals
as possible. The problem has received intensive interests in
recent years, as it serves as an effective preprocessing for
other high-level computer vision tasks such as object detec-
tion. Recent works [14, 16, 15] demonstrate that the pro-
posal algorithm can indeed significantly speed up the object
detection task and improves its performance.

Generic object proposal is first addressed within tra-
ditional sliding window object detection framework [1].
Methods such as [1, 22, 9, 7, 28] use features like saliency,
image gradient and contour information to measure the ob-
jectness of a given sliding window.

Different from the above, methods such as [19, 6, 21, 26,
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5, 23] address the problem from the image segmentation
perspective. Starting from an initial oversegmentation, ob-
ject proposals are modeled as a composition of neighboring
segments. This segment composition space is exponential,
so the principle of all segment-based methods is to use ef-
ficient strategy such as automatic foreground-background
segmentation [19, 6], randomized prim sampling [21], hi-
erarchical image segmentation [26], combinatorial group-
ing [5], or a combination of above [23] to search the seg-
ment composition space.

In this work, we develop our approach based on hierar-
chical image segmentation. As proposed in [26], using seg-
ments from hierarchical segmentation as proposal regions
handles multiple scales by natural. Moreover, organizing
object proposals with a hierarchical structure coincides with
the intuition that the semantic meanings of real world ob-
jects are hierarchical.

Hierarchical segmentation divides an image into a hierar-
chy of regions [20]. Each region is visually or semantically
homogeneous, and regions in lower level of the hierarchy
form subparts of regions in higher levels. It is most com-
monly implemented as a bottom-up greedy merging pro-
cess [4, 12, 23, 26, 24]. Starting from an initial oversegmen-
tation, the image segmentation hierarchy is generated by it-
eratively merging neighboring segments in a greedy man-
ner: a merging strategy gives a score to each pair of adjacent
segments and the pair with the highest score is merged. This
greedy merging process continues until either the whole im-
age is merged into one segment [26, 4] or the maximum
merging score is below some threshold [23, 24, 12].

The merging strategy has been defined in various ways.
The method in [4, 3, 5] gives merge scores using global
contour detection result; the methods in [12, 26, 23] heuris-
tically define merging strategies based on appearance sim-
ilarity and segment’s size; the methods in [24, 27] trains
a cascade of linear classifiers and uses classifiers’ decision
value as merge score.
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Figure 1. Illustration of our multi-branch hierarchical segmenta-
tion. Bottom left: input image. Top: greedy merging process
using only one merging strategy. The red circle indicates an incor-
rect merging: the dog’s head is merged to a piece of background
and it is lost. Bottom right: following the yellow arrows, by us-
ing the second complementary merging strategy, the dog is finally
successfully detected.

The performance of bottom-up greedy merging heavily
relies on the accuracy of the merging strategy because any
mistakes made in early stages are irremediable due to its
greedy nature. In the context of object proposal problem,
once a part of an object is incorrectly merged with the back-
ground, this object has little chance to be found later. How-
ever, since most of the real world objects are very com-
plicated, direct using segments from a single hierarchical
segmentation achieves low object detection recall. To in-
crease recall, the method in [26] directly combines object
proposals from a set of hierarchical segmentations with var-
ious merging strategies and initial oversegmentations. The
method in [23] combines proposals generated by searching
from different foreground seeds.

To search the segment composition space more effec-
tively, we propose our multi-branched hierarchical segmen-
tation based on a more general principle: an object consists
of subparts with various colors and textures may require a
combination of different merging strategies to bring it to-
gether. As illustrated in Fig. 1: given an image of a running
dog wearing a blue jacket, the most salient boundary in the
whole image is between the jacket and the dog’s three sep-
arate body parts. The first row shows the merging process
which uses color and texture similarity as merge score. Af-
ter merging superpixels into visually homogeneous parts,
it incorrectly merges the dog’s head with a piece of back-
ground (marked by the red circle), and this leaves the sub-
sequent merging no chance to detect the dog. Our solu-
tion for this is branching. By starting a new branch with a
new merging strategy specifically designed to be comple-
mentary to the first merging strategy right before where it
went wrong (shown in the bottom row), the dog is success-
fully detected in the branch.

To make our multi-branched hierarchical segmentation
effective, we address two important problems: how to de-
sign complementary merging strategies capable of fixing
mistakes made by others, and how to organize branching

since arbitrary branching causes exponentially large search
space. We handle those issues as below:
Learning complementary merging strategies. We model
the merging strategies as binary linear classifiers. We
propose an automatic learning procedure that trains the
complementary merging strategies (classifiers) by altering
weights for each training samples in a boosting-like fash-
ion. Different from traditional boosting [13], our goal is not
to combine the classifiers into a strong one, but to obtain a
set of complementary ones to enrich the chances of finding
objects missed in each other. This makes the later classifiers
capable of fixing the mistakes made in earlier classifiers.
Multi-staged branching. Using the complementary merg-
ing strategies (classifiers), we branch the searching into
multiple directions. New branches start only when the clas-
sifier’s decision scores of all pairs of adjacent segments are
below zero. This setting splits one single greedy merging
process into multiple stages. Merging strategies in each
stages are different.

Since the total number of branches at the last stage is
exponential to the stage number, it appears that this multi-
staged branching would generate too many proposals. But
as shown in Sec. 3, if we use a small branch degree (2 in our
experiment) and a large merging pace (merges 50% pairs of
segments) in each stage, the proposal number can be kept
relatively small.

In [24], merging strategies are also modeled as linear
classifiers and organized in cascaded stages. Compared to
their work, ours emphasizes on the complementary prop-
erty between multi-branches, rather than high boundary re-
call (99%) which results in a single sequence of cascaded
classifiers with a lot of stages (50).

Extensive comparison to previous object proposal meth-
ods indicates that our approach achieves the state-of-the-
art results in terms of object proposal evaluation protocols.
Moreover, in order to investigate how well these methods
perform for real-world object detection tasks, we test all
compared object proposal methods using the state-of-the-
art R-CNN detector [14] on PASCAL VOC2007 [10]. To
the best of our knowledge, we are the first to give this end
to end comparison. 1

2. Related Work

The existing object proposal algorithms generally fall
into two categories: scoring-based and segment-based. We
review the two categories separately in the below. A more
comprehensive survey is provided in [18].

The pioneer work in [1, 2] firstly addresses the prob-
lem of measuring the generic objectness scores of image
windows. It adopts a variety of appearance and geometry

1The contemporary work [17] also perform such an object proposal
evaluation using the R-CNN detector.



properties contained in an image window to measure how
likely there exists an object. It is improved in [22, 9] by
using more complicated features and learning methods. Re-
cent works in [7] and [28] score image windows by simple
concepts using only image gradients and contours [8] and
they show very fast computational speed compared to other
methods.

On the other hand, segment-based methods such as [19,
6, 21, 26, 5, 23] address the generic object proposal from a
different angle. Starting from an initial oversegmentation,
their principle is to use efficient strategy such as automatic
foreground-background segmentation [19, 6], randomized
prim sampling [21], hierarchical image segmentation [26],
combinatorial grouping [5], or a combination of above [23]
to search the segment composition space. The approach
in [26] has been proven effective by recent object detec-
tion works. Due to its high recall and reasonable compu-
tational speed, many state-of-the-art object detection algo-
rithms [14, 16] use its proposals as input object candidates.

Our work is mostly related to [26], as both use hierar-
chical image segmentation and multiple merging strategies.
Our approach differs in that it is built on two more general
principles: multi-staged branching and automatic learning
of complementary merging strategies. As shown in exper-
iments, our method is more effective as it finds a smaller
number of proposal with higher qualities.

The segmentation method in [24] also organizes the
greedy merging process in cascaded stages with learned
merging strategies, but based on different principles. Com-
pared to their work, we emphasize on improving object de-
tection recall by branching with complementary merging
strategies, rather than high boundary recall with single se-
quence of merging.

3. Multi-branch Hierarchical Segmentation
3.1. Greedy merging

Hierarchical segmentation is commonly implemented as
a bottom-up greedy merging process [4, 12, 23, 26, 12].
Starting from an initial oversegmentation, it evaluates the
merging score for each pair of neighboring segments with
some merging strategy. Then in each merging iteration,
the pair of segments with the highest score is merged to-
gether. This process carries on until either the whole image
is merged into one segment or the maximum score of the
remaining pairs are below some threshold.

3.2. Cascaded multi-branch greedy merging

In order to enrich the search capability for complex
objects, we propose to try different merging strategies
throughout the greedy merging process, which we call
branching. This approach turns the original hierarchical
image segmentation’s sequential evolution structure into a

Figure 2. Illustration of our approach. Top left: ground truth
bounding box annotation (blue), our proposal windows with high-
est IoU score (red). Top right: initial oversegmentation rendered
with mean color. Mid right: the tree structure of multi-branch hi-
erarchical image segmentation. Bottom & mid left: three objects
successfully detected at different branches.

tree-like structure. As illustrated in Fig. 2, objects will have
a better chance to be detected in one of those tree branches.

For each branch, we model the merging strategy as a bi-
nary classifier by using its decision value as merge score.
For the branches starting from the same parent branch, their
merging strategies are trained to be complementary in a se-
quential manner, which makes each of them capable of fix-
ing some mistakes made by the others. We describe how
our merging strategies are learned in Sec. 3.3

We organize branching by splitting the greedy merging
process into several cascaded stages. Algorithm 1 illustrates
our algorithm. During each stage, current branches progress
until no pair of adjacent regions are classified as positive,
which pronounces the end of that stage. Then at the be-
ginning of the next stage, each branch splits into K new
branches with K complementary merging strategies. This
process carries on until the last stage. The remaining seg-
ments are then merged greedily until the whole image is
merged as one segment.

One may worry that such a multi-branch tree structure
will bring exponentially large number of object proposals.
Indeed, a T -staged K-branch greedy merging can generate
a total of KT different hierarchical segmentation results.
Despite that the number of segmentations is exponential to
the number of the stages, the number of proposal number
can be kept relatively low if we use suitable parameters as
shown below:



Algorithm 1 Multi-branch hierarchical image segmentation
algorithm for object proposal generation.

Input: stage number T , branch degree K
Input: initial oversegmentation S0 = {s1, ..., sN}
Input: classifiers for each branch f (t)

j,k

Input: thresholds for each branch b(t)j,k

Initialize: proposal region set: R = S0, segmentation
queue: Q = {S0}.
for t = 1 to T do

branch num← |Q|
for j = 1 to branch num do

for k = 1 to K do
(P, S)← greedy merging Sj via f (t)

j,k , b(t)j,k

Add segmentation S to the back of queue Q
R ← R∪ P

end for
Remove Sj from Q.

end for
end for
return bounding boxes of each regions inR

Suppose each stage reduces current segment number
by a portion of λ, a T -staged K-branch greedy merging
roughly produces

∑T
t=1K

tN(1− λ)t−1
λ proposal win-

dows, whereN is the superpixel number for the initial over-
segmentation. If we set K = 2, and λ = 0.5, the result
proposal number is just TN , which is linear to the stage
number. Therefore, by setting a reasonable pace (merg-
ing speed λ) and branch degree (2 in experiment) for each
stage, our multi-branch hierarchical image segmentation al-
gorithm can explore more different segmentation results
while keeping the number of overall proposal windows not
too large.

We propose to control the pace of each stage by setting a
target miss rate τ for each classifier fk by searching a bias
threshold bk. We empirically set this target miss rate τ as
0.7. This means roughly 30% of the regions which belongs
to some objects will be merged in each stage. In test time,
we found that about 30% to 60% of regions are merged in
each stage, and for an image with 400 initial segments, a
4-staged 2-branched greedy merging produces roughly 900
proposal windows after removing duplicates.

3.3. Complementary merging strategy learning

Our key motivation is, in order to detect real-world ob-
jects, a combination of different merging strategies is nec-
essary. We propose to try different merging strategies
throughout the greedy merging process. To make this miss-
and-fix style framework effective, merging strategies for
each branch should be complementary. This means each of
them are supposed to be able to fix some mistakes made by

the others. To achieve this requirement, we propose an auto-
matic learning procedure, which models merging strategies
as binary linear classifiers, and train them in sequence.

We use PASCAL VOC2007’s segmentation dataset [10]
for training. For each image, a ground truth segmentation
map is given, which splits the image into three types of re-
gions: the objects, the background and the void (or unla-
belled) regions.

For clarity, we first describe how to train merging strate-
gies for branches starting from the same parent branch.
Then we show how to train merging strategies for multiple
stages. The whole pipeline is summarized in Algorithm 2.
Training for branches starting from the same parent
branch. From an initial input image segmentation pro-
duced by the parent branch, we classify each pair of neigh-
boring segments in the initial segmentation into three cat-
egories. It is positive if both segments belong to the same
object in ground truth. It is negative if the two segments
belong to different objects, or one of them belongs to the
background. Otherwise, it is unknown. We use the positive
and negative pairs as our training samples.

We use linear SVM with weighted loss [11] to train a set
of linear classifiers {fk(·)} sequentially. The loss weights
α

(k)
i for each samples are defined following the two intu-

itions below:
Diversify classifier’s preference. Weighted loss is used

to simulate different data’s prior distributions. Similar as
Boosting [13], we increase the loss weight for each training
sample if it’s wrongly classified by previous classifier. This
makes the classifiers complementary to each other.

Balance training set. Given an image with hundreds
of segments, positive samples largely outnumber negative
samples since most pairs of neighboring segments are wait-
ing to be merged. Therefore, we need to properly increase
the loss weight for those negative samples in order to keep
a reasonably small false positive rate. This is important to
reduce the effect of early mistakes, which are irremediable
in greedy merging.

The learning procedure works as follow:

1. Suppose some weight p(k)
i with initial value 1 is al-

ready assigned to each training sample xi. Instead of
directly using p(k)

i as weights in the loss function, the
loss weight α(k)

i for each sample is computed by bal-
ancing positive and negative samples’ total weights:

α
(k)
i =

N

2
(
ι(yi)

P
(k)
pos

+
ι(1− yi)
P

(k)
neg

)p
(k)
i , (1)

where ι(·) is the indicator function, which output 1 if
input number is positive, and 0 otherwise; N is the
training set size, and P (k)

pos, P (k)
neg are the sum of posi-

tive/negative training samples’ weight p(k)
i .



2. Train the kth linear classifier fk(·) with loss weights
α

(k)
i , and evaluate it over the training set: ŷi

(k) =
fk(xi).

3. Increase p(k)
i by β times if the sample xi is wrongly

classified by fk(·):

p
(k+1)
i = β ι(1− yiŷi(k))p

(k)
i . (2)

4. Return to step 1. to train the next classifier fk+1(·).

We control the degree of diversity by the parameter β.
A larger β makes the classifier more focusing on the wrong
samples and behaving more differently to its predecessors,
since the altered training data distribution emphasizes more
on the mistakes made by previous classifiers. However such
increase of diversity comes with a price of classification
precision reduction. As shown in Fig. 3, if β is too large, the
detection recall would slightly decrease. In our experiment,
we empirically set β = 2.
Training for multiple stages. In order to fit the evolution
of this multi-branch greedy merging process as closely as
possible, our complementary classifiers are trained specif-
ically for each branch in different stages. The thresholds
used to control stage pace are searched on a separate vali-
dation set (we use the training/validation split provided by
PASCAL VOC2007’s segmentation dataset). As illustrated
in Algorithm 2 , at each stage t, the Kt−1 sets of com-
plementary linear classifiers are learnt using the previously
described learning algorithm. These complementary linear
classifiers creates Kt new branches. Then for each such
branch, its classifier’s threshold is searched from the valida-
tion set, and new segmentation result on training/validation
images are generated for the next stage.

4. Experiments
4.1. Implementation details

We use the same initial oversegmentations and features
as in [26], for their simplicity and efficiency. Moreover,
using the same features and oversegmentations enables us to
exhibit the improvements caused by our automatic learning
and multi-branched hierarchical segmentation.

In details, we utilize the region-based features in [26] to
train our classifiers, including color histogram intersection,
texture histogram intersection, union region area over full
image size and area over bounding box size of the adjacent
regions to be merged. We also tried other features such as
region’s bounding box aspect ratio, perimeter, centroid or
major (minor) axis, but do not see noticeable improvement.

We use the graph-based segmentation algorithm [12] to
produce four initial over-segmentations per image by adopt-
ing two color spaces (Lab and HSV) and two different pa-
rameters (k = 50 and k = 100) respectively. This is the

Algorithm 2 Learning merging strategies for multi-branch
hierarchical segmentation.

Input: stage number T , branch degree K,
target miss rate τ
Input: training/validation image sets Itrain, Ivalid
Input: ground truth segmentation annotations: G
generate initial segmentations: S0

train, S0
valid

init queue: Qtrain ← {S0
train}

init queue: Qvalid ← {S0
valid}

for t = 1 to T do
for j = 1 to Kt−1 do

Strain ← Qtrain.POP()
Svalid ← Qvalid.POP()
Strain ← collect train samples from Strain,G
Svalid ← collect valid samples from Svalid,G
{f (t)

j,k} ← trainK complementary classifiers from
Xtrain

for k = 1 to K do . prepare data for next stage.
predict on Xvalid with f (t)

j,k

search bias term b
(t)
j,k s.t. miss rate = τ

Sk
train ←GREEDY MERGE(Strain, f

(t)
j,k , b

(t)
j,k)

Sk
valid ←GREEDY MERGE(Svalid, f

(t)
j,k , b

(t)
j,k)

Qtrain.PUSH(Sk
train)

Qvalid.PUSH(Sk
valid)

end for
end for

end for
return complementary classifiers f (t)

j,k and thresholds b(t)j,k

same setting as in [26]. We start our merging processes in-
dividually from those 4 over-segmentations and combines
their proposal results.

To select proposals for each image given a proposal bud-
get, we randomly rank our proposals using the same strat-
egy as [26]. Each proposal is firstly assigned an initial value
that equals to its position in the segmentation hierarchy,
then we multiply it by a random number to get the prior-
ity value for the proposal. All proposals of an image are
finally sorted according to their priority values.

We implement our method in Matlab. The average run-
time for our method is around 2.8 seconds per image on an
Intel 3.4GHz CPU.

4.2. Experiment settings

Following previous methods [2, 26, 7, 28], we conducts
our experiments on the PASCAL VOC2007 dataset [10],
which consists of 9963 images from 20 categories. Our
classifiers are trained on the VOC’s segmentation set. We
validate the proposed approach in Sec. 4.3, using the vali-
dation set to investigate the impact of and determine several
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Figure 3. Recall rate on different IoU thresholds while varying the
parameter branch degree (left) and β (right) on the third stage.
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Figure 4. Recall rate of our approach variants at each stage on the
IoU threshold of 0.7. Left: branching begins at different stages.
Right: branching stops at different stages.

important parameters. We report the results compared to
other state-of-the-arts on the test set in Sec. 4.4.

Since current proposal methods are tuned on PASCAL’s
20 object categories, there’s some concern about whether
these methods can generalize well for novel object cate-
gories. Hence, in Sec. 4.4, we also evaluate our method on
ImageNet2013 [25] validation set, which consists of over
20000 images with 200 object categories.

4.3. Investigation of parameters

In this section, we investigate the effect of our multi-
branch approach. Because it is hard to tell by which branch
an object is found if we combine object proposals using
multiple initial over-segmentations, in this section we only
use one initial over-segmentation (Lab color space and k =
50) for clarity.
Impact of important parameters. To evaluate our algo-
rithm’s behavior upon the branch degree and classifier com-
plementary factor β, which both influence the branch di-
versity, we vary their values on each stage respectively and
then compute the recall rate obtained on different intersec-
tion over union2 (IoU) thresholds. Note that we just show
the result on the third stage in Fig. 3 for brevity, since the
results on other stages are similar. As shown in Fig. 3 (left),
increasing branch degree can continuously improve the re-
call rate, but little improvement is observed when branch

2The Intersection over Union (IoU) [10] is typically used to measure
the accuracy of a window proposal. Is is defined as the intersection area of
a proposal with its nearest ground truth box divided by their union.

degree is larger than 2. From Fig. 3 (right), we can see that
maximum recall rate is reached when β is around 2. Thus
we use a four-stage, two-branch (using 2 complementary
classifiers) structure in our experiment below and set β to 2
on each stage.
Evaluation of multi-stage branching. We evaluate our
multi-stage branching by comparing it against a baseline
without branching, which only uses the first classifier in
each stage. Then we produce other variants by starting
branching on different stages or stoping branching after one
certain stage, respectively. Finally, we compare our ap-
proach to all these variants. Detailed recall rates using the
IoU threshold of 0.7 on each stage are reported in Fig. 4.

We make two important observations from Fig. 4.
Firstly, branching can significantly improve the perfor-
mance. Specifically, after using branching, the recall rate
increases from 0.45 to 0.7, and achieves more than 50%
improvement. Secondly, branching at different stages can
always make a progress and removing a branch at any stage
will lead to performance drop. Therefore, it is necessary to
branch at all stages to obtain the best performance.

4.4. Comparison with the state-of-the-art

We compare with recent state-of-the-art methods, in-
cluding selective search (SS) [26], geodesic object pro-
posals (GOP) [19], global and local search (GLS) [23],
edge boxes (EB) [28] and binarized normed gradients
(BING) [7]. Notice that EB and BING are scoring-based
methods, while the others are segment-based.

In the experiment, we use the setting EdgeBox70 (opti-
mized for IoU=0.7) for EB; NS = 200, NΛ = 15 for GOP,
and default settings for the rest of the methods. These set-
tings should yield the best overall performance for them.
Object proposal evaluation. The standard Recall-
#Proposal, Recall-IoU and AUC-#Proposal Curves are em-
ployed to evaluate the performance of each method. In the
Recall-#Proposal Curve, the IoU threshold is fixed first and
then recall rates are computed when proposal number in-
creases. Instead, the Recall-IoU Curve shows the perfor-
mance of top N boxes proposed on the different IoU thresh-
olds. Finally, AUC-#proposal Curve shows the area under
curve (AUC) values of Recall-IoU curves at different win-
dow proposal number thresholds.

Typically an IoU threshold of 0.5 is used to judge
whether an object is successfully detected by the detector
in object detection tasks. However as observed in recent
works [28, 19, 18] that an object proposal with 0.5 IoU is
too loose to fit the ground truth object, which usually leads
to the failure of later object detectors. In order to achieve
good detection results, an object proposal with higher IoU
such as 0.7 or 0.8 is desired. Therefore, the recall perfor-
mance measured under a tight IoU threshold is more im-
portant than under a loss threshold like 0.5. Moreover, it’s
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Figure 6. Comparison on ImageNet2013 validation set.

shown in [17] that the mAP rate of a detector is most re-
lated to the AUC score of the object proposal method. This
is confirmed in our latter experiment in Sec 4.4.

As shown in Fig. 5, scoring-based methods (EB and
BING) are competitive on the IoU threshold of 0.5 due to
their effective scoring algorithms. However, as the thresh-
old increases, their curves drops significantly. By con-
trast, all segment-based approaches show favourable per-
formance consistently when IoU threshold is changed. We
note that our method, SS and GOP always rank top at dif-
ferent IoU thresholds and top N proposal budgets. Ours
outperforms SS and GOP under tight IoU thresholds, and

has the best AUC-#Proposal Curve.
As mentioned previously, SS [26] is the most related

work with ours. To further understand why our branching
can improve, we compare our method with SS on different
object sizes. Since SS on average generates 2000 propos-
als per image, we report our proposal results using the first
2000 proposals for fairness. Fig. 8 shows their proposal
number and recall rate. We can see that ours outperforms
SS [26] for large objects (bounding box area> 104), and SS
is only moderately better on small objects. This is because
our branching increases the search space for large complex
objects, while SS concentrates its search more on small ob-



Figure 7. Qualitative examples of our proposal results. Blue: ground truth boxes. Red: our proposal windows with IoU ≥ 0.7. Green: our
proposal windows with IoU < 0.7.
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Figure 8. Comparison of our method and SS [26] on different ob-
ject sizes (10n pixels). Left: proposal number of two methods.
Right: recall rate of ours (solid line) and SS (dashed line).

mAP (%) recall AUC avg #prop.
BING [7] 37.9 0.321 1927
EB [28] 52.0 0.602 4049
GLS [23] 52.6 0.580 1787
SS [26] 54.2 0.584 2008
GOP [19] 53.8 0.648 2954
Ours(fast) 54.4 0.592 1315
Ours 55.2 0.648 2506

Table 1. R-CNN object detection results using various generic ob-
ject proposal methods on the PASCAL VOC 2007 test dataset.
Mean average precision (mAP), area under the curve (AUC) of
recall rate, average proposal number per image are reported.

jects (see Fig. 8 left).
In addition, in order to show whether ours and other

methods generalize well outside PASCAL’s 20 object cat-
egories, we further conduct evaluation on ImageNet2013
validation set. As shown in Fig. 6, our method achieves the
most competitive results among all the compared methods.
Moreover, it’s worth noticing that our approach’s improve-

ment over other methods on ImageNet is larger than that on
PASCAL VOC.

Using object proposal for object detection. In object de-
tection task, the object proposal algorithm provides candi-
date windows for subsequent object detectors. Therefore, it
is essential to evaluate the performance of proposal meth-
ods by the final detection precision. For this purpose, we
directly evaluate the state-of-the-art R-CNN [14] detector’s
performance using different object proposal methods as de-
tector’s input. We turn off the bounding box regression pro-
cess described in [14] in order to compare the original per-
formance of different proposal methods on a fair basis.

In addition to our approach’s standard version, we eval-
uate a fast version of ours, which only combines 2 (Lab,
k = 50, 100) out of the 4 initial oversegmentations.

Detailed results are reported in Table 1. As seen, our ap-
proach’s standard version achieves both the best mAP (55.2)
and the highest AUC (0.648), while our approach’s fast ver-
sion generates the fewest object proposals (1315) and still
obtains better mAP (54.4) than all the other state-of-the-art
object proposal methods. Although GOP has the same AUC
as ours, its proposal numbers is about 500 more.

5. Conclusions

We propose a novel object proposal algorithm that learns
multiple complementary merging strategies to branch the
search for object proposals. The approach achieves the
state-of-the-art performance under most object proposal
quality measurements. Future work includes exploiting
more effective features and applying the multi-branch idea
to semantic image segmentation.
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